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Abstract

We have developed and deployed a Distributed-Parallel Storage System (DPSS) in several

high speed ATM WAN testbeds to support several different types of data-intensive appli-

cations. Architecturally the DPSS is a network striped disk array, but is fairly unique in

that its implementation allows applications complete freedom to determine optimal data

layout, replication and/or coding redundancy strategy, security policy, and dynamic recon-

figuration.

In conjunction with the DPSS, we have developed a "top-to-bottom, end-to-end" perfor-

mance monitoring and analysis methodology that has allowed us to characterize all

aspects of the DPSS operating in high speed WAN environments. In particular, we have

run a variety of performance monitoring experiments involving the DPSS in the MAGIC

testbed, which is a large-scale, high-speed, ATM network and we describe our experience

using the monitoring methodology to identify and correcting problems that limit the per-

formance of high speed distributed applications.

Finally, the DPSS is part of an overall architecture for using high-speed, wide area net-

works for enabling the routine, location independent use of large data-objects. Since this is

part of the motivation for a distributed storage system, we describe this architecture.

I. The work described in this paper is supported by ARPA, Computer Systems Technology Office
(http://ftp.arpa.mil/ResearchAreas.html) and the U. S. Dept. of Energy, Office of Energy Research, Office of
Computational and Technology Research, Mathematical, Information, and Computational Sciences Division
(http://www.er.doe.gov/production/octr/mics), under contract DE-AC03-76SF00098 with the University of
California. Authors: wejohnston @lbl.gov, tierney @george.lbl.gov, Lawrence Berkeley National Laboratory,
mail stop: B50B-2239, Berkeley, CA, 94720, ph: 510-486-5014, fax: 510-486-6363,

http://www-itg.lbl.gov). This is report no. LBNL-39064.
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1.0 Introduction

We are developing a strategy for using high-speed networks as enablers for storage sys-

tems whose components are distributed around wide area networks. The high-level goal is

to dramatically increase the location independence for access to "large data-objects".

These objects - typically the result of a single operational cycle of an instrument, and of

sizes from tens of MBytes to tens of Gbytes - are the staple of modern analytical systems.

It is further the case that many of the instrumentation systems that generate such

data-objects are used by a diverse and geographically distributed community: examples

from the scientific community include physics and nuclear science high energy particle

accelerators and detector systems, large electron microscopes, ultra-high brilliance X-ray

sources, etc. There are correspondingly complex instrumentation systems in the health

care community that generate large data-objects. Our approach is an architecture that uses

a collection of highly distributed services to provide flexibility of managing storage

resources, reliability of access, and high performance, all in an open environment where

the use-conditions for resources and stored information are guaranteed through the use of

a strong, but decentralized, security architecture.

In this paper we will discuss some of the aspects of our distributed large data-object archi-

tecture, but we focus on the issues for achieving high performance for distributed systems

in wide-area ATM networks - a problem that is clearly central to the basic premise of our

approach.

As developers of high-speed network-based distributed services, we often observe unex-

pectedly low network throughput and/or high latency. The reason for the poor perfor-

mance is frequently not obvious. The bottlenecks can be (and have been) in any of the

components: the applications, the operating systems, the device drivers, the network

adapters on either the sending or receiving host (or both), the network switches and rout-

ers, and so on. It is difficult to track down performance problems because of the complex

interaction between the many distributed system components, and the fact that problems

in one place may be most apparent somewhere else. Further, these distributed applications

are complex, bursty, and have more than one connection in and/or out of a given host at

one time and simple tools like ttcp do not adequately simulate these conditions.

We have developed a methodology and tools for monitoring, under realistic operating con-

ditions, the behavior of all the elements of the application-to-application communications

path in order to determine exactly what is happening within this complex system. Our

approach is to instrument both the applications and the storage systems to do timestamp-

ing and logging at every critical point in the data handling system. We have also modified

some of the standard Unix network and operating system monitoring tools to log "interest-

ing" events using a common log format that can be correlated with the instantaneous

behavior of the application, the storage system, and the transport between them. This

allows us to characterize the performance of all aspects of the distributed systems and net-

work in detail, using "real-world" operations. This monitoring functionality is designed to

facilitate identifying bottlenecks, performance tuning, and various sorts of network perfor-
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mance research. It also allows us to measure throughput and latency characteristics of our

distributed application code.

The goal of the performance characterization work is to produce predictable, high-speed

components that can be used as building blocks for high-performance applications, rather

than having to "tune" the applications top-to-bottom as is all too common today.

In this paper we describe an architecture for handling large data-objects, the elements,

implementation, and applications of that architecture. We also describe in some detail the

architecture and performance of a prototype application and a distributed - parallel data

server, called the DPSS (Distributed Parallel Storage Server, formerly known as the Image

Server System, or ISS) that is used to drive many of the experiments, and is a key element

of the large data-object architecture. Finally, we describe some techniques for monitoring

and analysis of the elements of the architecture, and some experimental results using these

techniques.

2.0 Distributed Large Data-Object Management Architecture

The advent of shared, widely available, high-speed networks is providing the potential for

new approaches to the collection, storage, and analysis of large data-objects. In one

example, high-volume health care image data used for diagnostic purposes - e.g. X-ray

CT, MRI, and cardio-angiography - are increasingly collected at tertiary (centralized)

facilities, and may now be routinely stored and used at locations other than the point of

collection. In this case, the importance of distributed storage is that a hospital (in fact,

almost any instrumentation scenario) may not provide the best environment in which to

maintain a large-scale digital storage system, and an affordable, easily accessible,

high-bandwidth network can provide location independence for such storage. In the case

of health care, the importance of remote end-user access is that the health care

professionals at the referring facility (frequently remote from the tertiary imaging facility)

will have ready access to not only the image analyst's reports, but the original image data
itself.

This general strategy extends to other fields as well. In particular, the same basic

infrastructure is required for remote access to large-scale scientific and analytical

instruments, both for data handling and for direct, remote-user operation. See [ 1].

The basic elements of a distributed large data-object architecture include:

* data collection and the instrument-network interface

• on-line storage that is distributed throughout the network (for both performance and

reliability)

• processing elements - also distributed throughout the network - for various sorts of

data analysis

• data management that provides for the automatic cataloguing (metadata generation)

of the data being stored

• data access interfaces, including application-data interfaces
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(transparent)tertiarystorage("massstorage")management

useraccessto all relevantaspects(application,data,metadata,datamanagement)

transparentsecuritythatprovidesaccesscontrolfor all of thesystemscomponents
basedon theresource-owner'spolicy

Within the network storage system in particular a
architecturalissuesinclude:

• distributedstoragesystemoperationandperformance

• useraccessmethodologies

• security architecture

These elements all need to be provided with flexible, location-independent interfaces so

that they can be freely moved around the network as required for operational or other

logistical convenience.

Figure 1 illustrates the overall architecture. It indicates the central role of a high-speed

cache, which is used both for initial data collection, and to provide subsequent high-speed

access by applications.

Briefly, the data flow and information generation proceed as follows. The data-objects are

first cached on the DPSS (whose components are frequently scattered all over the

network). From the cache it is "processed" as required, but typically to produce several

pieces of information to be included in the "index". Metadata is generated (by analyzing

the object, collecting information forwarded by the object generator, or by associating

separate information with the object). This metadata is typically kept in "tagged-file" text

files. "Derived" information is generated; in the case of image-like objects, this includes

typically "thumbnail" and screen-sized representations, "typical" frames from a

video-object, etc. The data-object itself is replicated in a tertiary storage system. All of the

information related to the data-object is combined into a Web document that represents a

comprehensive index and source of meta-information for the data-object. At this point

the data-object has a comprehensive "index", a permanent instance in tertiary storage, and

(perhaps) a temporary instance in the network cache. A Web interface can be used for

searching, browsing, and accessing the metadata, or the object itself. (See Section 2.3,

"Data Management, Mass Storage, and the User Interface" and Figure 3, below.) This

same Web interface is used to manage the migration of the data-object in to, and out of,

the cache. The user or application never has to deal directly with the tertiary storage

system - it is managed in a transparent and location independent manner. Applications that

access the data-object can be launched directly from the Web interface, or can use the Web

interface to migrate the object to cache, and access it there. Access methods for the

data-objects are typically provided as loadable libraries for the application, and provides

for application or data specific views of the data-object. (These "objects" are not persistent

C++ objects: the "object" consists of access methods (of which there may be several), the

metadata (including "derived" objects"), and the data-object itself, all of which typically

reside in different locations.) As indicated in Figure 4 (Distributed-Parallel Storage

"middleware" service - the
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Figure 1 Overall Architecture for a Distributed, Large Data-Object Environment

System Architecture) the access library translates the application view of the object to

DPSS logical block addresses.

Together, these elements of a large data-object management architecture have provided

effective management for several classes of data-objects. (See [2] and [3].)

2.1 Data Collection

Instrumentation systems are at the front-end of many distributed large data-object

environments. Examples include particle accelerator detectors, Earth environment

monitoring satellites, and medical imaging systems. These sources generate essentially

continuous data streams, but ones that have "natural" boundaries that define "objects". For

many of the instrumentation systems that we are interested in, one of the primary issues is
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getting the data out of the instruments and onto the network. One of the circumstances that

has led to both the interest in, and practicality of, the architecture being described here is

that general purpose workstations now have memory and I/O bus structures that are fast

enough to acquire, structure, and send to the network, significant bandwidth data streams.

(For example, the newest (mid-1996) DEC Alpha and Sun UltraSparc workstations can

deliver 20 MBytes/sec of user data to a network interface.) This is an important capability

because it means that the only special hardware that is required to bring instruments

on-line is the interface between the workstation and the data source, and even this

interface may be provided in "software" using off-the-shelf DSP-based I/O boards.

The frontend workstation acquires the raw data, formats it as "objects" by adding or using

metadata from the experiment environment, and then sends the objects into the distributed

environment. The data collection workstation frequently also serves as a buffer so that

brief interpretations or slow-downs in the network do not result in loss of data

2.2 Network Cache

A high performance widely distributed network storage system is an essential component

of a network-based large data-object environment, Distributing the components of a

storage system throughout the network increases its capacity, reliability, performance, and

security. Usable capacity increases in conjunction with a widely deployed, generalized

security infrastructure that can support dynamic construction of systems through

brokering and automated acquisition of resources. (See [4].) Reliability increases because

storage systems that can be configured from components that have as little as possible in

common (e.g., location) provide the resilience that comes from independence (transparent

redundancy of data is also possible). Performance is increased by the combined

characteristics of parallel operation of many sub-components, and the independent data

paths provided by a large network infrastructure. Security is also potentially increased by

having many independent components, each of which has local and independent

enforcement mechanisms that can limit the scope of a security breach.

The Distributed-Parallel Storage System ("DPSS", also known as the "ISS") is an

experimental system in which we are developing, implementing, and testing these ideas.

In most configurations, the DPSS is used as a network-striped disk array designed to

supply and consume high-speed data streams to and from other processes in the network.

(See [5] and [6].)

The DPSS is essentially a "logical block" server whose functional components are

distributed across a wide-area network. (See Figure 2) illustrating the DPSS architecture.)

The DPSS uses parallel operation of distributed servers to supply image streams fast

enough to enable various multi-user, "real-time", virtual reality-like applications in an

Internet / ATM environment. There is no inherent organization to the blocks, and in

particular, they would never be organized sequentially on a server. The data organization is

determined by the application as a function of data type and access patterns, and is

implemented so that a large collection of disks and servers can operate in parallel,

enabling the DPSS to perform as a high-speed data source or data sink.
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Figure 2 Distributed-Parallel Storage System Implementation

At the application level, the DPSS is a semi-persistent cache of named data-objects, and at

the storage level it is a logical block server. Although not strictly part of the DPSS

architecture, the system is usually used with an application agent library called a "data set

structure access method". This component provides an object-like encapsulation of the

data, in order to represent complex user-level data structures so that the application does
not have to retain this information for each different data set. The function and interface of

the access methods are left to the application domain, but one simple example is for video

data. In this case the access method allows applications to request data by "frame"

number. The access method converts the application requests into logical block requests.

These logical block requests are then sent to the DPSS Master which serves two functions,

request and resource management. The Resource Manager maintains data set definitions,

and the Request Manager is responsible for mapping the logical block requests to physical

block requests. The Resource Manager also deals with interactions with the storage

servers to determine available storage (a storage server is an independent entity and may

deal with several DPSS Masters) and to establish the "security context" that provides the

scope of control for various resources.

A security model and supporting security architecture provides for enforcing "owner"

defined management policy for the physical resoarces and access policy for the data.
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2.3 Data Management, Mass Storage, and the User Interface

In any scenario where data is generated in large volumes and with high throughput, and

especially in a distributed environment where the people generating the data are

geographically separated from the people cataloguing and using the data, there are several

important issues: automatic generation of at least minimal metadata; cataloguing of the

data and the metadata as the data is received (or as close to real time as possible);

transparent management of multiple tertiary storage systems; and facilitation of

co-operative research by allowing specified users at local and remote sites immediate

access to the data, and incorporation of the data into other databases or documents.
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Figure 3 Large Data-Object Management for Video-like Objects

One example of an approach to this capability is "ImgLib'" (see [7]) which uses World

Wide Web based tools to provide this library-like functionality. Semi-automatic

cataloguing of incoming data is done by extracting associated metadata and converting it

into text records, by generating auxiliary metadata and derived data, and by combining

these into Web documents. Tertiary storage management is provided by using the remote

program execution capability of Web servers to provide transparent access to different

kinds of mass storage systems that then return the data-objects to the Web server, or, as is

the case in several of our applications (and typically with large data-objects), move the

data to a DPSS cache for access by applications. (For an example of a Java applet

accessing the DPSS, see http://www-itg.lbl.gov/ISS/browser/iss2d.html.) Where the

data-object is stored on tertiary storage, and how to access it, are all part of the Web-based

"object-index".
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Figure3 illustratessomeof thesepoints.It showsa browserinterfaceon theleft, and on
theright theresultsof automaticallybuildinga sub-collectionof data-objectsastheresult
of asearchon thetextualmetadata.Theinformationaboutthedata-objectsthatresultfrom
the searchis shownasa collection of thumbnails,associatedpointersto other typesof
deriveddata,andapointer to theoriginal data-object.For the data-objectsthat resideon
tertiarystorage(atape-robotbasedmassstoragesystemin thiscase),thereis anoptionfor
forcing migrationof a data-objectbackto theon-line qacheif the dataof interestis not
alreadythere.Theexamplein Figure3 is fairly simple,but in thehealthcareinformation
system mentioned below, the original video data-objectcannot be compressedand
requiresa specialapplicationto view the originaldata-objects(directly from the DPSS),
or via JPEGor MPEG"movies" thatarederivedrepresentations(see[2]).

2.4 A Health Care Information System Application

An example of a medical application that uses this distributed large data-object

architecture is a system that provides for collection, storage, cataloguing, and playback of

video-angiography images using a metropolitan area ATM network.

Cardio-angiography 2 is used to monitor and restore coronary blood flow,

and though clinically effective, the required imaging systems and

associated facilities are expensive. To minimize the cost of such procedures,

health care providers are beginning to concentrate these services in a few

high-volume tertiary, care centers. Patients are o,pically referred to these

centers by cardiologists operating at clinics or other hospitals; the centers

then must communicate the results back to the local cardiologists as soon

as possible after the procedure. The advantages of providing specialized

services at distant tertiary centers are significantly reduced if the medical

it_'ormation obtained during the procedure is not delivered rapidly and

accurately to the referring physician at the patient's home facility. The

delivery systems currently used to transfer patient information between

facilities include interoffice mail, U.S. Mail fax machine, telephone, and

courier. Often these systems are inadequate and potentially could introduce

delays in patient care. (See [3].)

Using a shared, metropolitan area ATM network and a high-speed distributed data

handling system, video sequences and still images are collected from the

video-angiography imaging systems, stored, and accessed by a remote user. The image

data are sent through the network to storage and analysis systems, as well as directly to the

users at clinic sites. Thus, data can be stored and catalogued for later use, data can be

delivered live from the imaging device to remote clinics in real-time, or these data flows

can all be done simultaneously. Whether the storage servers are local or distributed around

the network is entirely a function of the optimal logistics. There are arguments in regional

2. Cardio-angiography imaging involves a two plane, X-ray video imaging system that produces from sev-
eral to tens of minutes of digital video sequences for each patient study for each patient session. The digital
video is organized as tens of data-objects, each of which are of the order of 100 MBytes.
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health care information systems for centralized storage facilities away from the hospital

environment, even though the architecture is that of a distributed system. (See [8].)

This application is in operation in the CalREN, ATM network in the San Francisco Bay

Area, and is described in some detail in [2].

3.0 Network Storage: The Distributed-Parallel Storage System

A central issue for the approach of using high-speed networks and distributed systems as

the foundation of a large data-object management strategy is the performance of the sys-

tem components, the transport / OS software, and the underlying network. Problems in

any of these regimes will negatively affect our strategy, but such problems can usually be

fixed if they can be isolated and characterized. A significant part of our work with

high-speed distributed systems is developing a methodology and tools to locate and char-
acterize bottlenecks.

We have designed and implemented the DPSS, as part of an DARPA-funded collaboration

known as the MAGIC gigabit testbed 3 (see [9]), and as part of the U.S. Department of

Energy's high-speed distributed computing program. This technology has been quite suc-

cessful in several environments. The DPSS provides an economical, high-performance,

widely distributed, and highly scalable architecture for caching large amounts of data that

can potentially be used by many different users. Our current implementation provides for

real-time recording of, and access to large, image-like, read-mostly data sets. In the

MAGIC testbed, the DPSS is distributed across several sites separated by more than 1000

Km of high speed network that uses IP over ATM as the network protocol, and is used to

store very high resolution images of several geographic areas. The first client application

of the DPSS was "TerraVision", a terrain visualization application that uses the DPSS to

let a user explore / navigate a "real" landscape represented in 3D by using ortho-corrected,

one meter per pixel images and digital elevation models (see [10]). Terra Vision requests

from the DPSS, in real time, the sub-images ("tiles") needed to provide a view of a land-

scape for an autonomously "moving" user. Typical use requires aggregated data streams as

high as 100 to 200 Mbits/sec. Even in the current prototype system the DPSS is easily able

to supply these data rates from several disk servers distributed across the network.

The combination of the distributed nature of the DPSS, together with the high data rates

required by TerraVision and various load simulators, makes this a good system with which

to test a high-speed network in a much more realistic manner than ttcp-like tools allow.

3. MAGIC (Multidimensional Applications and Gigabit Internetwork Consortium) is a gigabit network test-

bed that was established in June 1992 by the U. S. Government's Advanced Research Projects Agency
(ARPA). The testbed is a collaboration between LBNL, Minnesota Supercomputer Center, SRI, Univ. of

Kansas, Lawrence, KS, USGS - EROS Data Center, CNRI, Sprint, U. S. West, Southwest Bell, and Splitrock

Telecom. More information about MAGIC may be found on the WWW at: hnp://www.magic.net/
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3.1 DPSS Architecture

As mentioned, the DPSS is essentially a "logical block" server whose functional compo-

nents are distributed across a wide-area network. The DPSS uses parallel operation of dis-

tributed servers to supply high-speed data streams. The data organization is determined by

the application as a function of data type and access patterns, and is implemented during

the data load process. The usual goal of the data organization is that data is declustered

(dispersed in such a way that as many system elements as possible can operate simulta-

neously to satisfy a given request) across both disks and servers. This strategy allows a

large collection of disks to seek in parallel, and all servers to send the resulting data to the

application in parallel, enabling the DPSS to perform as a high-speed data server.

The implementation is based on the use of multiple low-cost, medium-speed disk servers

which use the network to aggregate multiple server outputs for high performance applica-

tions. To achieve high performance all types of parallelism are exploited, including those

available at the level of the disks, controllers, processors / memory banks, servers, and the

network (see Figure 2).

The security model for the DPSS involves accommodating several different resource own-

ers. The context established between the Data Set Manager (DSM) (see Figure 4) and the

disk/storage servers reflects agreements between the owners of physical resources (disks)

and an agent that is providing storage to a user community. This context enforces the disk

usage agreements. The separate context established between the DSM and the users

reflects the use-conditions imposed by the data "owner", and provides for ensuring access

control that enforces those use-conditions. For more information on the security architec-

ture see [4].

The overall data flow involves "third-party" transfers from the storage servers directly to

the data-consuming application (a model used by most high performance storage sys-

tems). Thus, the application requests data, these requests are translated to physical block

addresses (server name, disk number, and disk block), and the servers deliver data directly

to the application.

3.2 Client Use of the DPSS

The client-side (application) use of the DPSS is provided through a library-based API that

handles initialization (for example, an "open" of a data set requires discovering all of the

disk servers with which the application will have to communicate) and the basic block

request / receive interface. It is the responsibility of the client to maintain information

about higher-level organization of the data blocks; to maintain sufficient local buffering so

that "smooth playout" requirements may be met locally; and to run predictor algorithms

that will pre-request blocks so that application response time requirements can be met.

The prediction algorithm enables pipelining of the operation of the disk servers with the

goal of overcoming the inherent latency of the disks. (See [5] and [6]).

None of this has to be explicitly visible to the user-level application, but some agent in the

client environment must deal with these issues because the DPSS always operates on a
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best-effortbasis:if it did not deliverarequestedblockin theexpectedtimeor order, it was

because it was not possible to do so. In fact, a typical mode of operation is that pending

block requests are flushed from the disk server read queues when the next set of requests

arrive from the application. Even if the DPSS cannot send all the requested data to the

application, it is possible that the data was at least read from disk into the DPSS memory

cache, where it will remain available for faster retrieval (for a short time). The application

may then routinely re-request some fraction of the data. This deliberate "overloading" of

the disk servers ensures that they will be kept busy looking for relevant blocks on disk and

caching them in server memory. This approach ensures that the data pipeline stays full,
and that disk server resources are never idle.

As mentioned, a DPSS client typically communicates with the DPSS through an

application library called a "data structure access method library" (see Figure 4).)

returned data stream

("third-party" transfers directly from the
storage servers to the applicalion)

shared security
contexl - 2

logical block
requests

single
high-bandwidth
sink (or source)

Application

(client)

Application
data

structure
access method
(dala structure to logical

block id mapping mc_dulc

(lihra_tl

DPSS API
(client-side library)

Figure 4 Distributed-Parallel Storage System Architecture

3.3 DPSS Implementation

In our prototype implementations, a typical DPSS consists of several (four - five) Unix

workstations (e.g. Sun SPARCStation, DEC Alpha, SGI Indigo, etc.), each with several

(four - six) fast-SCSI disks on multiple (two - three) SCSI host adapters. Each workstation

is also equipped with an ATM network interface. A DPSS configuration such as this can

deliver an aggregated data stream to an application of about 400 Mbits/s (50 Mbytes/s),

using these relatively low-cost, "off the shelf' components, by exploiting the parallelism

provided by approximately five disk servers, twenty disks, ten SCSI host adapters, and five
network interfaces.
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The softwareimplementationis basedonUnix interprocesscommunicationmechanisms
andaPOSIXthreadsprogrammingparadigmto manageresourcesonthediskservers(see
[11] and[5]). Theprimaryoperatingsystems(Sun'sSolaris,DEC'sOSF,SGI'sIRIX, and
FreeBSD)all haveslightly differentimplementationsof threads,but theyarecloseenough
thatmaintaininga singlesourceis not toodifficult.

The implementationsupportsa numberof transportstrategies,includingTCP/IP,RTP/IP
[12] andUDP/IE RTPandUDPdonot guaranteereliabledatadeliveryandneverretrans-
mit. Lost dataarehandledattheapplicationlevel.This approachis appropriatewhendata
hasanage-determinedvalue:datanot receivedby acertaintime is no longeruseful,and
thereforeshouldnot be retransmitted.This is the case for certain visualization scenarios.

(This paper, however, focuses on TCP performance issues.)

Other papers describing the DPSS, including a paper that describes the implementation is

detail [5], are available at http://www-itg.ibl.gov/DPSS/papers.html.

3.4 Terra Vision and tv_sim: Prototype DPSS Client and Monitoring Tool

Terra Vision uses the DPSS client library's logging facilities to log all data movement

events associated with an application session. It uses the a standardized log format to mon-

itor a data block's progress from the storage server disks, through the network, and into

the application client.

We have also developed a simulator program, tv_sim, that can generate data requests and

receive data blocks from the DPSS in a manner similar to Terra_sion's. Using this pro-

gram we can generate synthetic request patterns, or repeatedly use actual Terra Vision ses-

sion data request traces, and attempt to verify and analyze performance bottlenecks in the

DPSS, the application, or in the network in a controlled environment. Terra Vision is a

complex software suite running on complex hardware, and patterns of requested data are

complex, tv_sim can emulate the Terra Vision data request patterns through the

trace-driven operation facility, but is a "null" application that can be run at much higher

overall request rates than real applications, and can eliminate possible effects of data pro-

cessing or graphics processing on the network throughput.

,i

The tv_sim data request sending rate, in terms of block lists per second and blocks per list,

can be set by the user, as can the saving of history logs in the DPSS standard format. The

sender can also use trace / playback files of actual TerraVision sessions instead of generat-

ing its own lists of block requests, as mentioned above. Additionally, the user can specify

the use of multiple data sets, overall running time, and other runtime characteristics.

tv_sim and the DPSS thus can be configured to impose almost arbitrary load patterns on a
network and to record the results.

The Terra Vision data request trace is kept in terms of logical block request so that all

aspects of the configuration of the DPSS may be changed - the number of storage servers,

their location in the network, the data layout, etc. - to facilitate many types of experiments.

In other words, real application data request patterns may be applied against different con-
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figurations of the distributed storage system, network, etc., because the logical block

requests are independent of any aspect of the physical organization of the storage system.

4.0 Performance Monitoring Mechanisms

Network performance and distributed operation characteristics are obviously an important

factor in the architecture that we are describing. There are virtually no behavioral aspects

of an ATM "network" that can be taken for granted, even in an end-to-end ATM network.

By "network" we mean the end-to-end data path from the transport API through the host

network protocol (TCP/IP) software, the host network adaptors and their device drivers,

the many different kinds of ATM switches and physical link bandwidths, and then up

through the corresponding software stack on the receiver. Further, the behavior of different

elements at similar places in the network architecture can be quite different because they

are implemented in different ways. The combination of these aspects can lead to complex

and unpredictable network behavior.

We have built performance and operation monitoring into the storage system and several

applications, and have designed tools and methodologies to characterize the distributed

operation of the system at many levels. As requests and data enter and leave all parts of the

user-level system, synchronized timestamps are logged using a common logging format.

At the same time, various operating system and network parameters may be logged in the

same format. Several of these instrumented applications and tools are described below.

4.1 DPSS Timing Facility

A request for a data block takes the following path through the DPSS (see Figure 5). A

request (a list of blocks) goes from the application to the Request Manager, where the log-

ical block names are translated to physical addresses (server: disk: disk offset), then the

individual requests are forwarded to the appropriate disk servers. At the disk servers, the

data is read from disk into local cache, and then sent to the application (which has connec-

tions to all the relevant servers). Precise timestamps are gathered before and after each

major function, such as name translation, disk read, and network send. All timestamps are

then logged by the DPSS servers. The timestamps are also sent with the data block to the

requesting application, where logging can be performed using the DPSS client library.

Timestamp consistency is provided by the GPS clock-based network time protocol (NTP

- described below), which allows us to make precise throughput and latency measure-

ments throughout the DPSS system and underlying network. Instead of trying to analyze

the aggregate delay between sending a request and receiving the associated data block, we

can pinpoint delays to within narrowly-specified steps in the data path.
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4.20S and Network Layer Monitoring

To complement the monitoring at the application level and in the DPSS, we also monitor

various operating system and network conditions. We currently collect and log the follow-

ing types of information:

• TCP retransmits

• CPU usage (user and system)

• CPU interrupts

• AAL 5 information

• ATM switch buffer overflows

• ATM hosts adapter buffer overflow

We have modified "netstat" and "vmstat ''4 to do logging, netstat provides the contents of

various network-related data structures, while vmstat reports statistics on, among other

things, virtual memory, disk, and CPU activity. Both programs were modified to present

only a relevant subset of their information in the common logging format, and netstat was
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modified to poll andreportcontinuously(it normallyprovidesonly a snapshotof current
activity). We typically poll at 100ms intervals,andsincethekerneleventsarenot times-
tamped,thedataobtainedthisway representsall eventsin this interval.

4.3 Common logging format

To easily process the several gigabytes of log files which can be generated from this type

of logging, all events are logged using a common format:

keyword; hostname; seconds; nano-sec; data; data; data; ...... ;

The logging format is a semi-colon separated list of fields. The "keyword" is a unique

identifier describing what is being logged. By convention, the first part of the keyword is a

reference to the program that is doing the logging (e.g.: DPSS_SERV_IN,

VMSTAT_SYS_CALLS, NETSTAT RETRANSSEGS, TV_REQ_TILE). Each log record contains

both the hostname of the system on which the event occurred and a timestamp. The times-

tamp is modeled after the format returned from the Unix "gettimeofday" call, and is

logged with a numerical precision of one nanosecond. (We expect to be able to get the

NTP synchronized accuracy of the timestamps down to better than one microsecond

through a combination of the recently increased available precision of GPS signals and the

use of real-time clock boards in the systems under study.)

The end of every log record can contain any number of "data" elements. These can be

used to store any information about the logged event that may later prove useful. For

example, for the NETSTAT_RETRANSSEGS event, there is one data element, and it contains

the number of TCP retransmits since the previous poll time, and the DPSS START_WRITE

event data elements contain the logical block name, the data set ID, a "user session" ID,

and an internal DPSS block counter. The log records for a given data block are associated

by virtue of being collected and carried in the data block request message as it works its

way through the system.

4.4 Log File Analysis Tools

Tools to analyze log files include perl scripts 5 to extract information from log files and

write data files in a format suitable for using gnuplot 6 to graph the results. These tools

were used to generate the graphs in Section 5.0.

When trying to identify the source of specific problems (such as those that showed up in

the early WAN experiments described below) a good deal of exploratory, interactive anal-

ysis of the log data was the key to identifying the important factors, and graphical analysis

of individual, exceptional events has proven to be the most important aspect of analysis

when one is trying to identify the causes of specific behavior. There are several character-

4. Both netstat (displays network statistics) and vmstat (displays virtual memory statistics) are tools avail-
able on many Unix systems.

5. For more information see: http://www.metronet.com/perlinfo/perl5.html

6. For more information see: http://www.cs.dartmouth.edu/gnuplot_info.html
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istics that havemadegraphicalanalysisa powerfultechnique.What turnedout to be the
most importantwas the ability to treat "lifelines" (thetemporaltraceof a singleblock
from applicationrequestall theway throughthe systemto receiptof thedata)as identifi-
ableentitiesthatcouldbeindividuallymanipulatedandquantitativelyanalyzed.

In orderto enablethequantitativeanalysisof individualeventsthegraphicaltoolsneedto
haveseveralcharacteristics.Probablymostimportantis,thatthesignificantfeatures(e.g.,
all of the time points in a lifeline) must be groupedinto graphicalobjectsthat can be
manipulatedasunits.Further,it turnedout thatbeingableto "sketch",annotate,andcreate
specialmeasurementtools were all importantcapabilities,and so a versatilegraphics
drawingtool is very important.(This is illustratedin Figure7 andFigure I0.)

Thegnuplot graphics device driver for FrameMaker MIF 7 files groups graphics primitives

at two levels: the graphics primitives that result from plotting data from one file are one

"object", and at the next level down, each associated set of line segments are sub-objects.

Therefore, each of the log file elements, such as block histories, flushed block histories,

TCP retransmits, etc., are organized as objects, and the individual block life-lines are kept

as sub-objects within these larger objects. The FrameMaker graphics tool can manipulate

these objects and sub-objects independently, as well as providing the annotation, measure-

ment, etc., mentioned above, and this proved invaluable in isolating, measuring, and mark-

ing significant events.

4.5 Use of NTP

To be able to perform meaningful analysis of a network-based system, precise timestamps,

based on the synchronized clocks of all systems is essential. All MAGIC testbed hosts run

the 'xntpd' program [I 3], which synchronizes the clocks of each host both to time servers 8

and to each other. (End-to-end transit times, including speed-of-light and switch delays,

are of the order of 10 ms.) The MAGIC backbone segments are used to distribute NTP

data, allowing us to synchronize the clocks of all hosts to within about 250 microseconds

of each other. The location of the NTP servers in the MAGIC network are shown in Figure
9 (below).

This synchronization between host clocks allows us to characterize the operation of the

system in useful and surprising ways. (See Figure 7, below.) For example, the DPSS name

server, DPSS disk server, and application are typically on different physical hosts scattered

over the network. For the events that characterize the operation of the system, 1 millisec-

7. FrameMaker (http://www.adobe.com/prodindexlframemaker/main.html) is a multi-platform desk-top
publishing program. MIF is its interchange file format that represents both text and graphics.

8. There is considerable craft and lore in interfacing a precision time source to an NTP server platform, and
we readily acknowledge Craig Leres of the LBNL Network Research Group (http://ee.lbl.gov) for working
with Dave Mills and his students at Univ. of Delaware to "fine tune" every aspect of the particular GPS clock
and server platform OS that we use in our experiments and in the MAGIC testbed. Also see [14] for a
description of the characteristics of NTP in the MAGIC environment using this GPS receiver and server
combination.
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ond resolution is enough to establish the relationship between the impact of an event at

one point in the network, and the origin of the event somewhere else in the network.

Therefore 250 microseconds clock synchronization of all systems is required.

5.0 Example Analysis

This section presents some of the types of analysis that we have been able to do using the

methodology and tools described in the previous section. The specific examples represent

a snapshot of the state of our performance measurements during early 1996. As will be

illustrated, there are several aspects of the overall system that dramatically affect perfor-

mance. Two of these aspects that are changing rapidly are workstation ATM interfaces and

ATM switch buffer management, and the numbers quoted here are primarily intended to

be illustrative rather than an analysis of specific products. For example, over the past two

years the throughput of a Fore Systems SBA-200 interface card operating in a Sun SS-20

has gone from 55Mbits/second to 105 Mbits/seconds, due to upgrades in both OS and
device driver software, and in the same time frame the Fore ASX-200 ATM switch buffers

have increased in size by 50 times. It is therefore certain that specific numbers like these

will have changed by the time this paper is published.

The following sections describe performance results and analysis based on our monitoring

and logging methodology as applied to the DPSS, Terra Vision, and tv_sim programs

(described above) operating together in ATM LANs and the MAGIC WAN.

5.1 End-to-End Performance Experiments

Experiments have been performed to examine the detailed interaction between a DPSS,

whose disk servers are distributed over both ATM LANs and a wide-area ATM network,

and the Terra Vision application. Our initial monitoring experiments have focused on

issues important to high-performance, highly distributed applications such as the TerraVi-

sion / DPSS combination. Using the log files described above, we are able to generate

graphs (shown in the figures in this section) that have proven to be extremely useful in giv-

ing a detailed view of the throughput and latencies at each point in the distributed system:

that is, in the application, the DPSS, and in the network.

5.2 LAN Experiments

Figure 6 represents a set of traces, collected by monitoring during application-driven oper-

ation, that illustrates the general operational characteristics of the DPSS, and specifically

shows the strategy used by the Terra Vision application in order to keep the overall "pipe-

line" of the storage system full.

Generally, each line style in the graphs indicates data from a different DPSS disk server,

and different line styles are also used for "flushed" data requests (described below). The

graphs plot "real time" on the horizontal axis, and the monitoring points on the vertical

axis. The timestamps are collected at the monitor points, which represent critical points in

the data request-response process from application to distributed storage system and back.
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Figure 6 One Server LAN Test

(ATM LAN, one SS-20 as server, tv_sim on DEC 3000/600)

(See Figure 5.) Each line - a "life-line" - represents the history of a data block as it moves

through the end-to-end path.

Referring to Figure 6, Terra Vision sends a list of data block requests every 200 ms, as

shown by the nearly vertical lines starting at the appsend monitor points. The initial

single life-lines fan out at the server_in monitor point as the request lists are resolved into

requests for individual data blocks. Each block request is first represented individually in

the read queue (start_read).

Notice that many life-lines terminate at end_read, and that a few also end at start_read.

Any individual data request that is not satisfied by the disk server before the next request

list arrives is flushed (discarded) from all the server queues, but the data is retained in the

server memory cache. For example, in Figure 6 the life-lines that started at 10,400 ms that

were terminated at (_) did so because the TCP write delay (of unknown cause) at (_

"trapped" a previous set of blocks in the TCP write buffer. Block requests that were in the

DPSS write queue when the next request list arrived (at 10,600 ms) are flushed from the

queue. However, some of these blocks were re-requested in the 10,600 ms list, and these

re-requests are satisfied very quickly because the data is in the disk server memory cache.

This is seen in the nearly vertical life-lines at 1_. (The "flush on next request" behavior is
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necessaryto avoid deadlocksin theserver,andprovidesa pre-fetchmechanismfor the
applications.)

Referringto Figure7, usingtheselife-line graphsit is alsopossibleto get fairly detailed
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Figure 7 Detail From a Two Server, LAN, Experiment

information on individual operations within the disk servers. For example, when two

life-lines cross in the area between start_read and end_read, this indicates that a read from

one disk was faster that a read from another disk. (This phenomenon is clearly illustrated

for the server represented by the crossing solid lines in Figure 7 at (_).) This faster read

might be from disks with faster seek and read times (which is not the case in the

experiment represented in Figure 7, as all participating systems used identical disks) or it

might be due to two requested blocks being adjacent on disk so that no seek is required for
the second block.
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Further, in Figure 7 we can also see:

• at "B" two different characteristic disk reads (one with an 8 ms read time and one

with a 22 ms read time);

• at "C" the average time to cache a block and enter it into the network write queue is

ab,o,ul,8.6 ms;
• at D the time to parse the incoming request list and see if the block is in the mem-

ory, cache_ is about 5 ms;
• at ' E the overall server data read rate (four disks operating in parallel) is about 8

MB/sec;

• at "F" the actual throughput for this server while dealing with a set of real data

requests is about 39 Mb/s (this throughput is receiver limited);

• at'"'G, there are two cache hits (blocks found in memory) as a result from previ-

ously requested, but not sent, data being requested. (Flushed requests are not shown

in this figure.) ....
Figure 8 illustrates correct operation of multiple servers. This LAN-based two-server

TCP_retrans t

app_recei ve

start write

end read

_ start_read J/" _ , , ..

mas,er_out
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app s d L. .....t..- -
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Figure 8 Two Server Test (ATM LAN, two SS-20s as servers, tv_sim on DEC

3000/600)

experiment shows the interaction of life-lines for blocks from different servers, and a case

where the independent servers are behaving almost "perfectly": There are very regular

block delivery patterns that alternate almost one-for-one between servers.

5.3 Wide Area Network Experiments

Of particular interest is the experiment for the three-server configuration operating in the

MAGIC WAN testbed (Figure 9). The graphs for the LAN experiments (Section 5.2) show
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mostly expected behavior: smooth operation, no unexpected latencies, no TCP

retransmissions, and so on. However, in the WAN case illustrated in Figure 10, one sees

many TCP retransmissions and some extraordinarily long delays (up to 5500 ms).

5.3.1 WAN Experiment Environment

End-to-end performance experiments in the wide area use data block request traces from

the TerraVision application and then use tv_sim to replay the traces. The traces for the

application running in the MAGIC WAN environment were obtained with TerraVision

running on an SGI Onyx with eight 150 MHz MIPS R4400 processors, 256 MB of main

memory (4-way interleaved), two RealityEnginelI graphics processors, and a single Fore

Systems 100 Mb/s TAXI ATM interface. (This configuration is the minimum required to

get good interactive visualization of 3D landscape.)

Experiments were run on the MAGIC ATM testbed, using the configuration illustrated in

Figure 9. A five-minute Terra Vision session trace of data block requests was captured, and

then using this list of block requests, tv_sim was used to repeatedly request and receive

those blocks. Experiments were run using a DPSS with one, two, and three disk server

configurations. (The number of disk servers is independent of the application data request

strategy and transparent to the application, except for establishing the data transfer con-
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nections).Log fileswerecollectedin thevariousdistributedcomponentsfor satisfiedand
unsatisfiedblock requests,TCP retransmissioninformation,CPU usage,and ATM cell
lossin thehostadaptersandATM switches(thoughin thiscasetheswitchesdid notaccu-
rately reportcell loss).

5.3.2 Analysis of a WAN Problem

In the early operating environment of MAGIC, it was very difficult to get anywhere near

the expected throughput with multiple DPSS servers driving a single application. This

resulted in a series of cell-pacing expcriments done by our collaborators at U. Kansas,

Lawrence (see [15] and [16]) that eventually determined that if every source (e.g. DPSS

disk server) was paced at 1/N of the final link bandwidth that the total throughput

increased significantly. While this solved an immediate problem, it was not a general

solution, so we went back and conducted a series of experiments attempting to pinpoint

the specific cause of the problem. These experiments and their results are described in

[17]; however, here we illustrate some of the analysis.

Referring to Figure 10, first, let us analyze what the performance monitoring shows

directly. If we look at the long-delayed block life-lines (emphasized in the figure) we see

the characteristic behavior of a data block getting into the write queue (start_write

monitor point) and then incurring some very long delays getting to the application. These

long delays are almost always accompanied by one or more TCP retransmit events. The

reason that the server is blocked as a whole (actually just one application is blocked since

each application has its own TCP connection to the disk server) is that once a block is

written to the TCP socket, the user level flushes have no effect, and TCP will re-send the

block until transmission is successful, even though the data is likely no longer needed and

is holding up newer data. The server unblocks when the a retransmission is successful,

letting the next write proceed. The impact of this is substantial. Following received data

lifelines back in time, the time that the data transfers stalled can be identified. These points

are labeled (at the top of the graph) with the subscript "b" for blocked. (The three servers

are labeled A, B, and C.) The transmission path (TCP circuit) has recovered when the next

transmission proceeds at a "reasonable" rate, and the received data event just prior to the

first of a group of "normal" receives is labeled with a subscript "u" for unblocked. At the

bottom of the graph, the effective transmission from the servers for this application data

path is indicated by the horizontal bars. The impact of this blocking and unblocking is that

the effective throughput of all three servers combined (on a 100 Mbit/s data path that has

no other traffic) is of the order of 1 Mbit/s. Unfortunately, at the time of this experiment

we were not able to get accurate reporting from the switch "A" in Figure 9. However, what

we surmise happened is the following.

The ATM switch A is where the three server streams come together, and this switch has a

per port output buffer of only about 13K bytes. The network MTU (minimum

transmission unit) is 9180 Bytes (as is typical for ATM networks). So, the situation is that

three sets of 9 KBy IP packets are converging on a link with less than 50% that amount of

buffering available, resulting in most of the packets (roughly 65%) being destroyed by cell

loss at the switch output port. The TCP congestion window cannot get smaller than the

MTU, and therefore TCP's throttle-back strategy is pretty well defeated: on average, every
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retransmit fails, even at TCP's "lowest throughput" setting, because this smallest unit of

data is still too large for the network buffers.

Although we could not "prove" these assertions because we could not get accurate switch

cell loss information, this analysis of Figure 10 provided enough information that the

network operators upgraded the switch at A. The new switch as 600 KBy of buffering,

which allows TCP's congestion algorithms to work correctly, and throughput is now up to

an "average" of 30 Mbit/s per data path, as should be the case. For a more detailed analysis

of this experiment, see [17].

6.0 Conclusions

In order to achieve high end-to-end performance in widely distributed applications, a great

deal of analysis and tuning is needed. In the MAGIC testbed we are evolving a methodol-

ogy that includes network-wide precision time sources and extensive instrumentation for

time, latency, and throughput at all levels of the network, operating system, and applica-

tions. We monitor a large collection of parameters simultaneously (from the ATM level all

the way up through disk performance on the storage servers and the application's use of

the delivered data) in order to identify and correct performance bottlenecks. This

top-to-bottom, end-to-end approach is proving to be a very useful mechanism for analyz-

ing the performance of distributed applications in high-speed wide-area networks, and the

type of graphs presented here are very useful and informative.

Apart from the immediate need for performance in MAGIC, the larger question that we

hope to address by this methodology is whether high-performance use of networks, com-

puting platforms, middleware, and applications has to be treated as a "system" problem

(that is, all components considered and optimized together) or whether, as we find and cor-

rect problems, we will end up with an environment in which widely distributed, high-per-

formance applications can be build by composing "stock" components, both hardware and
software.

Some advice for those building distributed applications: timestamp all critical operations

using a uniform log format, and run NTP on all hosts, so that the sort of analysis described

here is possible.

7.0 Future Work

We are refining the tools and the measurement techniques that capture and log events, and

several of the other MAGIC consortium members are doing the same. (For example, a

number of the "events" currently collected are the results of watching system variables for

some interval, and then using the interval mid-point as the time stamp, when we should be

getting the actual event timestamp.) We are exploring the use of the University of Kansas

"Data Stream Driver" [ 18] to improve our timing accuracy for operating system events.

We hope to be able to use the log files from the DPSS client library as "playback" files for

'netspec'[19], which is a distributed network performance measurement tool that is being

designed and developed at the Telecommunications and Informations Sciences
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Laboratory, University of Kansas. netspec supports multiple connections per session, and

it will support multiple protocols. This will allow us to easily recreate many different

traffic scenarios. This work was presented at the 1996 DARPA Workshop on Wide Area

ATM Performance (see http://www.tisl.ukans.edu/Workshops/ATM_Performance/), and

one result of this workshop is there will be more work put into working with the

University of Kansas to incorporate this logging and graphing methodology into netspec
to create a general purpose set of tools.

This work is ongoing,

http://www-itg.ibl.gov/DPSS.

and progress reports will be published at
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